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We present a solution for simple curves of the Makeenko-Migdal equation which leads to 
string dynamics. By the non-renormalized nature of the equation, any formal solution requires 
some extra physics input before it can be meaningfully interpreted. We then propose a "minimal" 
renormalization both of the Wilson loop for a large number of colors and of the corresponding 
Makeenko-Migdal equation. This scheme is based on Witten's idea of a master field. The 
regularized solution contains a scale (related to the Regge slope) which we connect to a 
gauge-invariant domain size in the QCD vacuum, and the solution can only make sense for loops 
that are large relative to this scale. Using a vortex condensate model for the QCD vacuum, the 
length parameter is related to the QCD length scale. 

1. Introduction 

Makeenko and Migdal [1] have shown that the unrenormalized loop average 

(1) 

satisfies the equation 

o  w[c] 
Ox~, 6o~,.(x) : NgZ~v C d y~8(4)( x - y )W[Cxy] W[Cyx] (2) 

in the N ~  oo limit of multicolor SU(N)  QCD. 
Eq. (2) is a closed equation for W[C] and it is interesting to investigate the 

solutions. Recently Migdal [2] proposed a solution described in terms of non-linear 
Fermi strings for which he suggested the name elfin theory. 

In sect. 2 we show that a very simple string theory already satisfies the equation in 
a certain formal sense, at least for curves which are no more complicated than the 
ones shown in fig. 1. We do not know whether our solution is related to Migdal's. 

However, finding formal solutions to the equation can at most be a first step 
towards obtaining physically interesting results. This is because the equation is 
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derived without regard to renormalization and hence the phenomenon of dimen- 
sional transmutation which is crucial to the physics content of the theory is not 
present. Instead the equation involves very singular contributions proportional to 

g2NSt2)(0). (3) 

In sect. 3 we propose to interpret this by the substitution 

g2(aZ)N 
ggNS(2)(0) --.* a2 , (4) 

w h e r e  a 2 is the cross section of a domain in the QCD vacuum. Models for such 
domains have recently been considered by several authors [3, 4]. We discuss how the 
substitution (4) could arise in a particular renormalization scheme based on Witten's 
master field idea. Finally we use this connection to establish a relation between the 
Regge slope, the QCD scale parameter and the vacuum energy density (the "bag 
constant"), using the model of refs. [3] for the QCD vacuum. The numerical 
agreement is excellent. 

We find it interesting that this interpretation of the regularized equation (and its 
solutions) seems to provide a connection between the loop space formulation of 
QCD and the idea of flux quantized vacuum structure first considered by 't Hooft  
[5, 6] and Mack [7]. 

Finally let us comment on the connection between QCD and dual string models 
which seems to be implied by our work (assuming our solution of the MM equation 
is also a solution of QCD). 

Dual string theory was beset with severe problems in 4 space-time dimensions. 
However, these arose at the unitarization level which corresponds to 1 / N  corrections 
in our scheme. Those corrections are strictly outside the MM equation. To treat 
them, one must include correlations between Wilson loops. This leads to an exact, 
generalized MM equation [1] which we do not know how to solve. 

Another difficulty with dual string theory was that the lowest meson state was a 
tachyon. One might add that the low-lying mesons do not behave as quarks bounded 
by a structureless string. A much better approximation appears to be provided by 
the bag model. For example, the phenomenon of hyperfine splitting seems to have 
no natural treatment in terms of a structureless string, whereas it is readily taken 
into account in a bag picture in the form of one-gluon exchange. 

In our picture we regard all these phenomena to be associated with the short- 
distance part of the theory, i.e. phenomena happening on a scale shorter than the 
domain size. Such phenomena cannot be accounted for with our regularization 
prescription. 

It is important to realize that a solution of eq. (2) involves the knowledge of W[C] 
for all curves C. Thus, since we only cover curves of the type shown in fig. 1 our 
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Fig. 1. Simple loops for which the minimal area surface touches the loop only at the boundary. Only for 
these is the very simple form eq. (10) a solution. 

work is much more limited in scope. The key point in our paper is to relate the 
regularization to a domained vacuum. 

In sect. 4 we summarize our findings and give concluding remarks. 

2. A string solution of the Makeenko-Migdai equation 

Our proposal for a solution (with respect to the curves in fig. 1) of the MM 
equation (2) together with the Bianchi identity 

8w[cl 
~"~,A ~o,.( x ) = o, (5) 

is heavily inspired by QCD 2 [8]. Recently a complete solution of the 2-dimensional 
MM equation has been obtained [9]. Actually for not too complicated loops it is 
quite easy to write down the value of the Wilson loop in QCD 2. In this paper our 
main concern is with loops of the form shown in fig. 1 and simple iterations thereof. 
We defer any detailed analysis of very complicated loops with many self-intersections 
till later, although we present a conjecture for a solution of this problem. 

Using the axial gauge in QCD 2, the theory becomes "free" (gluons do not 
interact) and the "gluon-propagator" reduces to the instantaneous form 

(2) - -  I Di, ( x ) - : l x 2 [ 8 ( x , ) ,  (6) 

satisfying 

2 (2) i~2D,, (x)  = (~2(x). 

From this, one easily obtains the following result for loops of the form shown in 
fig. 1: 

W[C]0cD ~ exp ½g~D N dx 1 dYl I , ,  

= e x p (  - -  g2DN½ A(C) } ,  ( 7 )  
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leading to the familiar expression for the Regge slope a'  in QCD 2 

1 1 
0 g t - -  _ _  i 

~rg~D N rr~,2D , (8) 

where g2D is the (dimensionful) coupling constant in QCD 2, and where ~k2D ---- g2DN 
is kept fixed for N--) oo*. A(C) is the area enclosed by the loop C. 

The expression (7) may be written 

W[C] QCD: = exp{-- lX2of~fz  do,/(x)do,j(Y)6(2)(x--Y)}, (9) 

where E is the region enclosed by the curves in fig. 1 and doij ( i , j =  1,2) are 
elements of area. 

This form suggests an ansatz for the Wilson-loop for similar curves in 4- 
dimensions: 

W[C] =exp{--¼~ofy. fy~ d%o(x)d%#(y)64(x-y)},  (10) 

where h o is the dimensionless coupling kept fixed in the large-N limit, X0 = g~N. 
Here the surface element tensors have indices a, fl = 1,2,3,4 and Y'm is the minimal 
area surface. As we shall see, the selection of that particular surface is mainly 
dictated by the Bianchi identity, eq. (5). Equivalently, the form eq. (10) may be 
written 

so that 

W[C] = exp( - ½ho~(2)(0)A(Z~) ) ,  (11) 

W[Cxy ] W[Cyx] 8(4)(x - y)  = W[ C] 8(4)( x - y ) .  

This gives a very singular expression for the Regge slope. That is not surprising. The 
MM equation (2) is a non-renormalized quantum equation. Hence one cannot expect 
the phenomenon of dimensional transmutation to take place in any other way than 
indicated in eq. (11). Notice that h 0 is the bare coupling constant which is zero by 
asymptotic freedom. In sect. 3 we shall give an interpretation of the quantity 

~.o8(2)(0) (12) 

leading to a finite number in good agreement with the phenomenological Regge 
slope. 

* Notice that any non-planar diagram vanishes identically by eq. (6). 
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In this section we treat the expression (12) as a well defined parameter. 
The expression (10) suggests the following expression for the area derivative for 

which we subsequently present independent arguments: 

8W[C] _)%f d%,.(y)~(4)(x_y)W[C ] 
~°~v(X)= Zm 

= I -X°~(2)(O)n~'"(x)W[C]'  for X C ~m, (13) 

[ 0 ,  for x ~ ~'m, 

where n~  is the orientation tensor of the 2-dim tangent plane at the point x. 
We would like to make several comments about this expression. For a general 

functional of loops we define the area derivative at an arbitrary point x in terms of 
the wire construction of fig. 2. At the point x a small loop is placed with orientation 
in the (#,u)  plane. The loop is connected with "wires" to the main loop C. The 
difference for loops with opposite orientations is formed, and the result is divided by 
twice the area of the loop. This guarantees that an antisymmetric tensor is obtained. 

Now we understand why the area derivative is zero for x ~ Y~: the area of the 
minimal area surface is increased for both terms in fig. 2 and the difference is zero. 

For x E Y, but the test-loop orthogonal to the original surface, again the area of 
the deformed surface is changed in the same way for either orientation. This is in 

accord with eq. 03):  

 w[c] 
~o~,~(x) = O, for (#,1,) orthogonal to surface. (14) 

The only case where we get a non-vanishing result is when the test-loop lies in the 
surface (fig. 3). 

In this case we know the result for QCD: (see ref. [9]; again this may be easily 
verified using planar Feynman diagrams in the gauge of eqs. (6)). For the first term 

W[C] = exp{-½X2D [A(C) + A(C')] }(l -- X2DA(C')), 

i%  lj2d  
Fig. 2. Definition of the area derivative at an arbitrary point x using the "wire prescription", idol is the 

numerical value of the area of the test loop. 
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C" E' 

Fig. 3. Loops that need be considered to evaluate the area derivative for x E ~m and in the direction of 
the local tangent plane. 

and for the second 

W[ C] = exp{ - ½ X 2D[ A(C) -- A(C')] } . 

This shows that our simple ansatz, eq. (10), cannot be correct for loops correspond- 
ing to the first term in fig. 3*. Nevertheless, the expression (13) for the area 
derivative is correctly reproduced. 

It is interesting to compare this expression with Mandelstam's formula: 

(15) 

From eq. (13) we deduce that: 
(i) the correlation between F,~(x) and the Wilson operator vanishes except when x 

belongs to Zm; 
(ii) for x E E m only certain components of F~(x)  have non-vanishing correlation: 

if Em is a purely space-like surface, only the magnetic field perpendicular to that 
surface (at x)  contributes; if Y'm is a spacetime-like surface, only the component  of 
the electric field along the string contributes. This is very suggestive, and conforms 
with standard beliefs in this field. 

So far we have not had to assume that Y~m is the minimal area surface. Now let us 
see how the Bianchi identity selects that particular surface. It is convenient to 
introduce coordinate directions referring to the tangent plane at the point x. Let t~ (0 
and t~ (2) be orthonormal tangent vectors at x and let n(~ 1) and n(~ 2) be orthonormal 
vectors, orthogonal to the tangent plane. The properties of the area derivatives may 
then be expressed as: 

8w[c] 8w[c] 
8ot,nj(x ) =0, 8onmj(x) =0, (16) 

where i , j - -  1,2 and t i refers to components along t (i) and similarly with nj. The 

* This is also clear from the ansatz itself, since 84(X-y) becomes ambiguous for loops of the 
overlapping type (e.g. the first term in fig. 3). 
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Bianchi identi ty becomes  the s ta tement  

8w[c]  
3., 8g,tk(x) = O. (17) 

Thus,  moving x by  a small amoun t  in a direction normal  to the surface, the area 
derivative (in the surface) should be  unchanged.  

N o w  we must  r emember  that  to evaluate the area derivative at the displaced x, we 
should surround x by  a test loop and connect  by  wires to C. Hence,  it becomes  

necessary also to change the surface correspondingly.  F r o m  our  expressions (13) and 
(11) we see that  condit ion (17) is that  the Wilson loop itself is unchanged or 
equivalently that  the area is stable. But that  is just  the condit ion that  l~ m be the 
min imal  area surface. To  arrive at this result we needed the Bianchi identi ty for an 
arbi t rary  value of x, not  just  for x in the vicinity of  the loop C. This is why we have 
taken some care in explaining the concept  of wire derivatives*. 

Writ ing the M M  equat ion (2) at the point  x E Y'm using the coordinate  system 
(t(i),n (j)) and the propert ies  (16) it takes the form 

Or, 6°t,t, (x)SW[ C] _ XOfc d Ytj W[Cxy] W[ Cyx] 6(4)( x - y ) 

= X o S t 2 ) ( O ) ~ c d Y t j W [ C x y ] W [ C y x ] r Z ( x - y ) ,  for x E C .  (18) 

This  is our central  form. The r ight-hand side is zero except for x E C. I t  gives a 
non-trivial  contr ibut ion only when x is a self-intersection of the curve. In that  case 
we have the split-up 

8 ( 4 ) ( x - - y )  = 8 ( ( x - y ) t , ) 8 ( ( x -  y ) ,~ )6 ( ( x - - y ) . , )8 ( ( x - - y ) .~ )  

= 8~2)(x - y)8(2)(0),  for x,y  E C. 

We see that  due to the propert ies  (16) of  the area derivative we get a dimensional  
reduct ion of the M M  equat ion to the 2-dimensional  form, eq. (18), with the 
subst i tut ion 

Xo8(2)(0)---~ X2D. (19) 

* We are indebted to B. Felsager for discussions. Notice that we have taken the displacement of x to 
zero prior to taking the area of the test loop to zero. That is justified within our interpretation of sect. 
3 that any area should be larger than the domain size. 
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This suggests the following conjecture: for any loop C, however complicated, 
introduce the minimal area surface (thus, if C is so singular that a minimal surface 
cannot be constructed, our conjecture does not work). Thereby curves with similar 
patterns of self-intersections are defined in QCD 2. For those we know the value of 
the Wilson loop from ref. [9]. It is given as a combination of exponential and 
polynomial functions of the areas of the "windows", and it satisfies the 2-dimensional 
MM equation. Then by the principle of general covariance, the same function of the 
areas satisfies a 2-dimensional "curved" MM equation in the curved space of the 
minimal area surface. Eq. (18) is just this equation written down in the local "inertial 
frame" of the tangent plane. 

To summarize: For simple curves, eq. (10) is valid. For more complicated curves 
the conjectured solution for W[C] is obtained by evaluating the planar graphs for 
W[C] in QCD 2 for the curved surface Y m. According to ref. [9], the result may be 
expressed in terms of the areas of all the "windows" of the curve. 

We realize that our prescription may become ambiguous for very complicated 
curves (knots and the like), but we do not want to pursue these complications here. 

In the appendix we present an elementary detailed proof that the equation is 
satisfied for the simple curves of fig. 1. 

3. Regularization and renormalization of the Makeenko-Migdal equation 

As pointed out by Witten [10], N--->oo QCD behaves as if the functional 
integration defining the quantum theory is dominated by a single field configuration 
(up to gauge transformation). This single field is Witten's master field c~ A~ (x).  The 
Wilson loop average in N---> ~ QCD could then be expressed in terms of the master 
field with no functional averaging involved. 

The simplest conceivable ("minimal") renormalization would then give a finite 
value for the Wilson loop if we demand that the master field A cl be renormalization- 
group invariant. Notice that in our notation A~ includes the coupling constant. The 
above requirement is what one finds in the background field method. In that case, 
however, the background field must be a solution of the classical equations of 
motion. This is not true for the master field and hence our requirement cannot be 
justified by the background field method. Indeed our prescription might lead to a 
renormalized W[C] which differs radically from the result of a more conventional 
renormalization. 

By eq. (11) we see that a finite value of W implies a finite value of the Regge-slope 
parameter a'  which, of course, must be required. Further we see that the quantity 

g2NS(2)(O ) ~ g~N (20) 
a~ 

is required to be renormalization-group invariant. In eq. (20), a02 is a "bare" area 
( = zero) corresponding to the reciprocal value of 8(2)(0). 
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We now get inspirat ion f rom models  of  the Q C D  vacuum suggesting the existence 

of  domains  having a characterist ic size [3,4]. In  the vortex condensate  model  of  ref. 
[3], domains  are characterized by  a certain gauge-invariant  flux and in a par t icular  
f rame by  a ( renormal iza t ion-group invariant)  magnet ic  field strength gH. The 
domains  are tubes with cross-sectional area a 2 given by 

a2 = 2.__~_~ (21) 
g H "  

This area corresponds  to a gauge-invariant  flux quan tum (see the fourth paper  in ref. 
[3]). 

The  vacuum energy is minimized for*  

g2 (a2 )  
4rr -- 0.19, and g T ~ =  1.28Av, (22) 

where g2(a  2) is the Q C D  running coupling constant  minimizing the vacuum energy 

in the gauge group SU(3) and Ap is the Q C D  scale defined in p ropaga to r  renormali-  
zation. 

These considerat ions induce us to suggest that  we regularize the M M  equat ion as 
well as our  solution by  the subst i tut ion 

g2N g 2 ( a Z ) N  
- -  _ _ . ) _ _  

a 2 a 2 (231 

This prescript ion is similar in spirit to one considered by  Greensi te  [11] in a different 
context**.  

F rom eqs. (11),(20),(22) we get 

P I 2 
a = [ 0 . 2 9 A p  ] . (24) 

In principle we could insert a value for Ap obta ined  f rom the analysis of  deep 

inelastic da ta  or f rom e + e -  ~ qFqg data. However,  such a procedure  is of  l imited 
value since our expressions come from l- loop calculations. Ins tead we prefer  to 
compare  with the following expression for the vacuum energy density (the "bag  
cons tant" ,  ref. [3])*** 

B 1/4 ~- 0.42A p, 

* There is a factor 2 difference between our definition of g2 and the one used in ref. [3]. 
*" We are grateful to J.P. Greensite for discussions on this point. 

*** Thus B measures the vacuum energy density. We need not assume the general validity of the bag 
model. 
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or, using eq. (24), 

B i / 4  _ 0.12 (25) 

Using a '  = 0.9 GeV --2 we find 

B 1/4 = 130 MeV, 

a surprisingly good value considering the crudeness of the estimate. The estimate 
was based on a model for N = 3. Recently, progress has been made in generalizing 
the vortex condensate model to N =  oo [12]. In particular, the expectation that the 
value of gH and the domain size has a smooth N ~  oo limit, has been confirmed. 

In the arguments given above it is crucial that the domains occur in an O(4)-invariant 

way, since the curve C can have any orientation in euclidean space. This is possible 
in the disordered phase (see second paper in ref. [3]), but, of course, not in an ordered 
phase, where our arguments thus break down. This is satisfactory, since we do not 

expect confinement in the ordered phase. 
Also, to preserve gauge invariance the area a 2 has the minimal value given by eq. 

(21). In general a 2 can be an integer times 27r/gH (corresponding to an increased 
a')*, so that eq. (24) represents the minimal value of a'. 

4. Discussion and conclusion 

The formal solution of sect. 2 seems to establish a connection between N---~ oo 
QCD (with no light quarks) and a dual string model. It  is worth emphasizing in this 
connection that unitarity corrections are down by 1/N,  and hence are not covered 
by the MM equation (2). Hence unphysical dimensions are not needed for quantiza- 

tion. 
One may ask why the string is structureless, since in QCD at short distances the 

Coulomb potential dominates and provides, for example, a hyperfine structure in 
charmonium. The reason for this is that the scale of the MM equation (2) is singular, 

given by the 8~4)(x-y)  function, and it is only through the regulation of this 
singular scale that one obtains a non-trivial a'.  In our case the regulation of the 
8-function is done by associating it with the domain size. Such a procedure, however, 
does imply that one gives up saying anything about phenomena at distances below 
the domain size, i.e. below ~ 1 fm. Thus, with our regulator we can only obtain 
information over large distances (where, for example, the hyperfine structure cannot 
be seen), and hence it is not unnatural to obtain a structureless string. 

* Thus, it is not possible, e.g. to have a 2 - - - - 0 . 7 . 2 ~ / g H .  
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We emphasize that we do not know whether this solution coincides with Migdal's 
solution [2]*. Further investigations are necessary in order to find the complete set 
of solutions. If there are several solutions presumably only one of these is also a 
solution of QCD. 

Our second main point in this paper is the interpretation of the singular quantity 

gZN3(2)(O) 

in terms of a QCD vacuum domain size. In order for the domain size to be gauge 
invariant, it must presumably contain a Zu flux. This therefore suggests an interest- 
ing connection between the loop space formulation of QCD and the approach to 
confinement based on the center of the gauge group [5-7]. 

After completion of this work we have noticed that a remark in ref. [ 13] indicates 
that Migdal also has considered eq. (10)**. 

We have profited greatly from discussions with B.J. Durhuus, H.B. Nielsen and B. 
Felsager. 

Appendix 

The purpose of this appendix is to verify the MM equation (2) for the ansatz 
(10),(11),(13) in the form 

-07, fzmd%(y)8~s2'(x ,y)=~cdY,~}2'(x ,y  ) (A.I) 

(using eqs. (11)). We introduce conformal coordinates (a, ~') for the surface with the 
following properties 

y~)~, = 0 ,  y~y~ =,9, 9,, (A.2) 

where we have used the notation Of/Oo =f',Of/O'r =f .  
At any point y on the surface, we introduce the tangent vectors along coordinate 

lines y~ and p~,. Then 

3~2)(x,y) = 3 (y ' ( x  - - y ) )3 ( y ( x  - y ) ) J ,  (A.3) 

where 

j :  ly ' l l . f , l :y  'z =~2. (A.4) 

* If so, the elf mass must be related to the inverse domain size. 
** We are grateful to A. Patk6s for drawing our attention to this work. 
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Also 
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doz,(y) = dod~'(y~ 9, --PRY')" (A.5) 

Then for the left-hand side of eq. (A.1) we get 

-- ~ do  d~'[ y~9~ - 9~,y~] [ y£~'( y ' ( x -  y))8( .9(x - y)) 

+.9,8(y'(x - y ) ) a ' ( y ( x  - y ) ) ]  J 

= - fxdod",-(2,,a'(y'(x - y ) ) a ( . i , ( x  - y ) )  

- y '6(  y'(  x - y ) )6'(  .9( x -- y ) ) ) j 2 .  (A.6)  

We want to show that this expression equals 

ix do d ~'( ~ [ 9, J6( y ' ( x -  y))6(.9(x-y))]-~---~[y[,J~(y'(x- y ) )8( .9 (x -y ) ) ] )  

= ~ , ( d r ~ + d o a Y ' X  z ,: (X,y)  

= ¢cdY~8(sZ)( x, y ) , (A.7) 

which is the right-hand side of eq. (A. 1). 
Let us prove that (A.7) and (A.6) are equivalent. Consider the first term in the 

integrand of eq. (A.7): 

~--~[j~.JS(y'(x- y))6( P(x - y ) ) ]  = ~8(2)(x,y) (a) 

+ 9~2 y' y"8(y ' (x  -- y))a(fi(x -- y)) (b) 

+ ~ j [ (  y"(x--  y) - -  y'Z)8'(y'(x-- y))8(.9(x-- y)) 

+ (c) 

Here the term (a) is cancelled against a similar term from doing the r-differentiation 
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in eq. (A.7). The (c) part  contains the term 

- - y ) ) a ( y ( x  - y ) ) ,  

169 

which we recognize as the first term in the integrand in eq. (A.6). To see that the 
remaining terms in (c) cancel the term (b), we expand y~' and P~ on y~,P, and two 
vectors orthogonal to the tangent plane. We then use that x6'(x)= -8(x). For the 
y"(x  - y)  term we get 

,, y, 

y " (  x - y ) = y ' (  x -- y ) ~ + terms giving vanishing contributions.  y , -  

Similarly 

. t  . 

f i ' ( x - -  y ) = J ) ( x - - y ) ~ Y f  + " " .  

But from eq. (A.4) 2y'y"= 2 p y  and one sees that the claimed cancellations take 

place. 

Notice that we did not  use the condit ion for the surface t o  be the minimal area 

one. 
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